Researchers reveal unseen planet by its gravity


More than a 150 years ago, before Neptune was ever sighted in the night sky, French mathematician Urbain Le Verrier predicted the planet's existence based on small deviations in the motion of Uranus. In a paper published today in the journal Science online, a group of researchers led by Dr. David Nesvorny of Southwest Research Institute has inferred another unseen planet, this time orbiting a distant star, marking the first success of this technique outside the solar system.

Using a laborious computational method to assess the effects of gravity, known as gravitational perturbation theory, Le Verrier argued in favor of Neptune's existence and predicted the position of this hidden world to within an arc degree, as later detected directly by Johann Galle of the Berlin Observatory.

"Today's telescopes are detecting planets around distant stars, and NASA's Kepler Telescope, launched in 2009, is a champion among them," says Nesvorny. It finds planets by continuously monitoring the brightness of more than 150,000 stars, searching for brief periods of time, known as transits, when a star appears fainter because it is obscured by a planet passing in the foreground. But there's a twist.

"For a planet following a strictly Keplerian orbit around its host star, the spacing, timing and other properties of the observed transit light curve should be unchanging in time," said Dr. David Kipping of the Harvard-Smithsonian Center for Astrophysics and second author of the paper. "Several effects, however, can produce deviations from the Keplerian case so that the spacing of the transits is not strictly periodic."
A hidden planet, for example, can distort the sequence of transits if it gravitationally pulls on the transiting planet and delays some transits relative to others.